The relationship between H-sets and open filter adhérences is considered. The open filter adhérences of an H-closed space are shown to be H-sets; and, a necessary and sufficient condition is given for an H-set S, of a Hausdorff space X, to be an open filter adherence. A necessary condition is determined for the existence of a minimal adherent set which contains S; and, in the case that X is H-closed, sufficient conditions are determined. As a related result, an H-closed space X is shown to be seminormal if every H-set of X possesses a neighborhood base consisting of regular open sets.