We consider an energy-functional describing rotating superfluids at a
rotating velocity ω, and prove similar results as for the
Ginzburg-Landau functional of superconductivity: mainly the existence
of branches of solutions with vortices, the existence of a critical
ω above which energy-minimizers have vortices, evaluations
of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.