The ionosphere is one of the main factors affecting the accuracy and integrity of satellite-based augmentation system positioning systems. This paper presents the results of a 30-day study of the accuracy and integrity of the European Geostationary Navigation Overlay Service (EGNOS) conducted at the EPOD airport belonging to the Aeroclub of Warmia and Mazury in Olsztyn, in northeastern Poland (the area until recently considered as the edge of EGNOS coverage). Analyses of the parameters characterising the accuracy and integrity of positioning were performed in three calculation variants/modes: with the original EGNOS ionospheric correction, with correction determined by means of Klobuchar algorithm, and finally with modified ionospheric coefficients developed by the CODE. Studies have shown clearly that the original EGNOS ionospheric model gives the best integrity and accuracy results allowing to use EGNOS for approach with vertical guidance procedures, while the Center for Orbit Determination in Europe and Klobuchar models could only be used for non-precision approach operations.