With growing interest in nanostructured thin films produced by glancing angle deposition (GLAD), it becomes increasingly important to understand their overall growth mechanics and nanocolumn structure. We present a new method of isolating the individual nanocolumns of GLAD films, facilitating automated measurement of their broadening profiles. Data collected for α = 81° TiO2 vertical nanocolumns deposited across a range of substrate rotation rates demonstrates that these rates influence growth scaling parameters. Further, individual posts were found in each case that violate predicted Kardar-Parisi-Zhang growth scaling limits. The technique's current iteration is comparable to existing techniques in speed: though data were studied from 10,756 individual objects, the majority could not be confidently used in subsequent analysis. Further refinement may allow high-throughput automated film characterization and permit close examination of subtle growth trends, potentially enhancing control over GLAD film broadening and morphology.