Ordinary survival models implicitly assume that all individuals in a group have the same risk of death. It may, however, be relevant to consider the group as heterogeneous, i.e. a mixture of individuals with different risks. For example, after an operation each individual may have constant hazard of death. If risk factors are not included, the group shows decreasing hazard. This offers two fundamentally different interpretations of the same data. For instance, Weibull distributions with shape parameter less than 1 can be generated as mixtures of constant individual hazards. In a proportional hazards model, neglect of a subset of the important covariates leads to biased estimates of the other regression coefficients. Different choices of distributions for the unobserved covariates are discussed, including binary, gamma, inverse Gaussian and positive stable distributions, which show both qualitative and quantitative differences. For instance, the heterogeneity distribution can be either identifiable or unidentifiable. Both mathematical and interpretational consequences of the choice of distribution are considered. Heterogeneity can be evaluated by the variance of the logarithm of the mixture distribution. Examples include occupational mortality, myocardial infarction and diabetes.