Aphidophagous hoverflies (Diptera, Syrphidae, Syrphinae) are common flower visitors and aphid predators in a range of flowering plants, including fruit crops. Here, we investigate whether aphid prey DNA can be detected in the gut contents of hoverfly larvae from a commercial strawberry field as a proof of concept that a molecular approach can be used to measure agricultural biocontrol. We used high-throughput sequencing (HTS) to target insect DNA and compared the resulting data to reference databases containing aphid and hoverfly DNA sequences. We explored what impact incorporating wildflowers within polythene-clad tunnels may have on aphid DNA detection rates in hoverfly larvae. In a randomized block experiment, coriander (Coriandrum sativum), field forget-me-not (Myosotis arvensis) and corn mint (Mentha arvensis) plants were inserted in rows of strawberries. Their effect on aphid DNA detection rates was assessed. Aphid DNA was found in 55 of 149 specimens (37%) validating the method in principle for measuring agricultural services provided by hoverflies. Interestingly, detection rates were higher near plots with forget-me-not than plots with coriander, though detection rates in control plots did not differ significantly from either wildflower species. These findings confirm that hoverflies predate aphids in UK strawberry fields, and that HTS is a viable method of identifying aphid DNA in predatory hoverflies. We comment on the need for further method development to narrow down identifications of both predator and prey. We furthermore provide some evidence that there is an effect of intercropping strawberry crops with wildflowers which may affect aphid consumption in hoverfly larvae.