We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A goal in statistics is to make inferences about a population. Typically, such inferences are in the form of estimates of population parameters; for instance, the mean and variance of a normal distribution. Estimates of population parameters are imperfect because they are based on a finite amount of data. The uncertainty in a parameter estimate may be quantified using a confidence interval. A confidence interval is a random interval that encloses the population value with a specified probability. Confidence intervals are related to hypothesis tests about population parameters. Specifically, for a given hypothesis about the value of a parameter, a test at the 5% significance level would reject that value if the 95% confidence interval contained that hypothesized value. This chapter explains how to construct a confidence interval for a difference in means, a ratio of variances, and a correlation coefficient. These confidence intervals assume the samples come from normal distributions. If the distribution is not Gaussian, or the quantity being inferred is complicated, then bootstrap methods offer an important alternative approach, as discussed at the end of this chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.