We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The spinal cord and brain stem are connected to the autonomic target cells by two-neuron chains of the peripheral sympathetic and parasympathetic nervous systems. These chains consist of populations of preganglionic neurons and postganglionic neurons that are synaptically connected in the autonomic ganglia. They transmit messages from the central nervous system to the target cells are called "final autonomic pathways." These pathways are the building blocks of the peripheral autonomic nervous system. The main difference between the final somatomotor pathways and the final autonomic pathways is that the central messages may undergo quantitative changes in the autonomic ganglia, and that some effector cells are innervated by more than one type of functional autonomic pathway. The impulse pattern transmitted by peripheral autonomic pathways to the target cells is the result of integration in the spinal cord, brain stem, hypothalamus and telencephalon. Reflex patterns that are generated by afferent stimuli in peripheral autonomic neurons may serve as physiological markers to analyze the functional structure of the autonomic circuits in the neuraxis. Using this approach of neurophysiological recording from single autonomic neurons in vivo, detailed knowledge has accumulated about the organization of the autonomic nervous system in animals and humans.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.