In the current investigation, a two-stage hybridization model has been used for the motion planning of humanoids in complex environmental conditions using regression analysis and the firefly algorithm. In the first step, sensory outputs are fed to the regression model, and an initial turning angle (ITA) is obtained. In the second step, the ITA is again fed as input to the firefly model along with other required inputs, and the final turning angle (FTA) is obtained. The FTA serves as the guiding parameter for the humanoids to reach their desired destinations. The developed motion planning scheme has been implemented on NAO humanoid robots in simulation and experimental platforms. A Petri-Net control strategy has been integrated along with the hybrid scheme while negotiating multiple humanoids in a common platform. The results obtained from the motion planning analysis in simulation and experimental arenas are compared against each other in terms of selected navigational parameters and observed satisfactory agreements. Finally, the proposed hybrid controller is also tested against another standard navigational model and substantial enhancement in the performance has been noticed.