This study provides a general analysis for scattering of a planar monochromatic compressional sound wave by a fluid-filled viscoelastic spherical membrane immersed in an unbounded viscous heat-conducting compressible fluid. The thermoviscous effects in the fluid are incorporated by application of a thin boundary layer model. The dynamic viscoelastic properties of the spherical membrane are rigorously taken into account in the solution of the acoustic-scattering problem. Havriliak-Negami model for viscoelastic material behaviour along with the appropriate wave-harmonic field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in form of infinite series. Subsequently, the basic acoustic quantities, such as the scattered far-field pressure directivity pattern, and the scattering cross section are evaluated for given sets of viscoelastic material properties. Numerical results clearly indicate that, in addition to the traditional fluid thermoviscosity-related mechanisms, dynamic viscoelastic properties of the obstacle can be of significance in sound scattering. The presented analysis is of practical interest in development of contrast agents for echocardiographic research with potential clinical applications.