This article reports the search for nonflammable, stable electrolytes based on ionic liquid (IL) compounds, able to effectively improve the needed safety and reliability of lithium batteries. The most significant results are reviewed with the aim of elucidating critical aspects governing the properties of IL electrolytes, including (1) transport properties affecting ionic conductivity and the cycling rate of battery systems, (2) electrochemical/chemical stability toward most conventional electrode materials, and (3) thermal properties determining the range of applicability. Both liquid and polymer electrolytes, adopting ILs as the main component or as an additive to standard electrolyte solutions, are considered. Very promising results, in terms of battery prototype performances in scaled-up configurations, demonstrate the validity of the use of ILs for practical applications. Even though further improvements are necessary, particularly at high current density operations in both lithium-metal and lithium-ion systems, the realization of safer, high-performance batteries based on IL electrolytes is certainly possible. It can be concluded that ILs represent a viable solution to disappointing compromises between energy density and acceptable safety features in lithium batteries.