We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss the existence of universal spaces (either in the sense of embeddings or continuous images) for some classes of scattered Eberlein compacta. Given a cardinal κ, we consider the class δκof all scattered Eberlein compact spaces K of weight ≤ κ and such that the second Cantor-Bendixson derivative of K is a singleton. We prove that if κ is an uncountable cardinal such that κ = 2≤κ, then there exists a space X in δκ such that every member of δκ is homeomorphic to a retract of X. We show that it is consistent that there does not exist a universal space (either by embeddings or by mappings onto) in . Assuming that = ω1, we prove that there exists a space X ∈ which is universal in the sense of embeddings. We also show that it is consistent that there exists a space X bΕ, universal in the sense of embeddings, but δω1 does not contain an universal element in the sense of mappings onto.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.