A detailed study of the asymptotic behavior of the first-passage-time p.d.f. and its moments is carried out for an unrestricted conditional Ornstein-Uhlenbeck process and for a constant boundary. Explicit expressions are determined which include those earlier discussed by Sato [15] and by Nobile et al. [9]. In particular, it is shown that the first-passage-time p.d.f. can be expressed as the sum of exponential functions with negative exponents and that the latter reduces to a single exponential density as time increases, irrespective of the chosen boundary. The explicit expressions obtained for the first-passage-time moments of any order appear to be particularly suitable for computation purposes.