Green's function and complex function methods are used here to investigate the problem of the scattering of SH-wave by a cylindrical inclusion near interface in bi-material half-space. Firstly, Green's function was constructed which was an essential solution of displacement field for an elastic right-angle space possessing a cylindrical inclusion while bearing out-of-plane harmonic line source load at any point of its vertical boundary. Secondly, the bi-material media was divided into two parts along the vertical interface using the idea of interface “conjunction”, then undetermined anti-plane forces were loaded at the linking sections respectively to satisfy continuity conditions, and a series of Fredholm integral equations of first kind for determining the unknown forces could be set up through continuity conditions on surface. Finally, some examples for dynamic stress concentration factor of the cylindrical elastic inclusion are given. Numerical results show that dynamic stress concentration factor is influenced by interfaces, free boundary and combination of different media parameters.