Extracellular Ca2+ and Zn2+ influence many
aspects of retinal function. Here, we examined the effect of external
Ca2+ and Zn2+ on potassium channels of retinal
horizontal cells. When extracellular Ca2+ was lowered from 3 mM
to 0.3 mM, horizontal cell transient outward currents elicited by voltage
steps from resting membrane potential (−70 mV) were decreased by
approximately 50%, whereas the sustained currents remained unchanged. This
effect was due to a hyperpolarizing shift in the steady-state inactivation
curve of A-type K+ currents when extracellular Ca2+
concentration was lowered. The mean half inactivation potential of the
steady-state inactivation curves was hyperpolarized from −56.3
± 4.7 mV in 3 mM Ca2+ to −76.4 ± 3.9 mV in
0.3 mM Ca2+. Neither the state-steady activation curve nor the
kinetics of inactivation was significantly changed in low extracellular
Ca2+. The addition of 30 μM Zn2+ restored peak
outward currents in 0.3 mM Ca2+. The half inactivation voltages
were depolarized from −70 ± 2.8 mV in 0.3 mM Ca2+
to −56 ± 2.6 mV in 0.3 mM Ca2+ plus 30 μM
Zn2+. Taken together, the results indicate that external
Ca2+ and Zn2+ maintain the activity of A-type
potassium channels in retinal horizontal cells by influencing the voltage
dependence of steady-state inactivation.