For performance-based seismic engineering of buildings, the direct displacement-based seismic design method is different from the coefficient method used in FEMA-273 and the capacity spectrum method adopted in ATC-40. The method not only is a linear static procedure but also is applied to the design of new constructions. This paper concerns with experimental studies on the accuracy of the direct displacement-based design procedure. Experimental results of three reinforced concrete (RC) columns designed by the displacement procedure are presented and discussed through pseudo-dynamic tests and cyclic loading tests. From the tests, it is shown that the stiffness degrading factor of RC columns plays a key role. The direct displacement-based seismic design method can reliably capture the maximum displacement demand of the test RC columns if the stiffness degrading factor adopted in the displacement design method for RC material is adequate.