This paper considers a class of epidemic models in which susceptibles may enter or leave the population according to a general continuous time density dependent Markov chain. A sequence of such epidemics indexed by N, the initial number of susceptibles, is constructed on the same probability space as a time-inhomogeneous birth-and-death process. A coupling argument is then used to demonstrate the strong convergence of the sequence of infectives to the birth-and-death process. This result is used to provide a threshold analysis of the epidemic model in question.