Computer scientists have introduced ‘paging algorithms' which are a special class of Markov chains on permutations known, in probability theory, as ‘libraries': books being placed on a shelf T (T is an infinite interval of the set Z of the integers) and a policy ρ : T → T such that ρ (t) < t being chosen, a book b placed at t ∊ T is selected with probability pb, it is removed and replaced at ρ (t) prior to next removal. The different arrangements of books on the shelf are the states of the Markov chain. In this paper we prove that, if the shelf is not bounded on the left, any library (i.e. for any policy ρ and any probability ρ on the books) is transient.