We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we will introduce the ‘grid method’ to prove that the extreme case of oscillation occurs for the averages obtained by sampling a flow along the sequence of times of the form $\{n^\alpha : n\in {\mathbb {N}}\}$, where $\alpha $ is a positive non-integer rational number. Such behavior of a sequence is known as the strong sweeping-out property. By using the same method, we will give an example of a general class of sequences which satisfy the strong sweeping-out property. This class of sequences may be useful to solve a long-standing open problem: for a given irrational$\alpha $, whether the sequence $(n^\alpha )$ is bad for pointwise ergodic theorem in $L^2$ or not. In the process of proving this result, we will also prove a continuous version of the Conze principle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.