Nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on consistent size-dependent piezoelectricity theory. By considering geometrically nonlinear and axial displacement of the centroid of beam sections, basic nonlinear equations of piezoelectric nanobeam are derived using Hamilton's principle and variational method. Afterwards, in the special case for the formulation derived, hinged-hinged piezoelectric nanobeam is studied, and static deflection as well as free vibrations of the nanobeam under mechanical loads is determined. In this case, results of the linear formulation of the size-dependent theory are compared to those of the linear and nonlinear classical continuum theory.