Gap junctional intercellular communication is assumed to play an important role during pre- and peri-implantation development. In this study, we eliminated connexin43 (Cx43) and connexin45 (Cx45), major gap junctional proteins in the pre- and peri-implantation embryo. We generated Cx43−/−Cx45−/− embryos by Cx43+/−Cx45+/− intercrossing, because mice deficient in Cx43 (Cx43−/−) exhibit perinatal lethality and those deficient in Cx45 (Cx45−/−) exhibit early embryonic lethality. Wild-type, Cx43−/−, Cx45−/−, and Cx43−/−Cx45−/− blastocysts all showed similar outgrowths in in vitro culture. Moreover, Cx43−/−Cx45−/− embryos were obtained at the expected Mendelian ratio up to embryonic day 9.5, when the Cx45−/− mutation proved lethal. The Cx43−/−Cx45−/− embryos seemed to have no additional developmental abnormalities in comparison with the single knockout strains. Thus, pre- and peri-implantation development does not require Cx43 and Cx45. Other gap junctional proteins are expressed around these stages and these may compensate for the lack of Cx43 and Cx45.