For a large class of neutral population models the asymptotics of the ancestral structure of a sample of n individuals (or genes) is studied, if the total population size becomes large. Under certain conditions and under a well-known time-scaling, which can be expressed in terms of the coalescence probabilities, weak convergence in DE([0,∞)) to the coalescent holds. Further the convergence behaviour of the jump chain of the ancestral process is studied. The results are used to approximate probabilities which are of certain interest in applications, for example hitting probabilities.