The α-tocopherol content of a number of different fetal, neonatal and maternal guinea-pig tissues was determined and compared with plasma and erythrocyte α-tocopherol values. During late gestation, the fetal liver appears to act as a storage site for α-tocopherol, the majority of which is released immediately following birth. In contrast, lung and brain vitamin E levels are relatively constant over the final period of gestation and during early neonatal life. The ontogeny of α-tocopherol in brain and lung was similar to that for erythrocytes while plasma α-tocopherol content varied considerably and did not accurately reflect tissue α-tocopherol status. Surprisingly, fetal and maternal lung α-tocopherol concentrations were similar at all time-points considered, whereas fetal liver α-tocopherol status was always considerably greater than maternal liver α-tocopherol content. These results, if representative of the human fetus, suggest that preterm infants may not have tissue α-tocopherol concentrations as low as previously assumed and that during the perinatal period erythrocyte α-tocopherol content is a more accurate indicator of tissue α-tocopherol concentration than plasma α-tocopherol content.