In this paper, we study the superposition of finitely many Markov renewal processes with countable state spaces. We define the S-Markov renewal equations associated with the superposed process. The solutions of the S-Markov renewal equations are derived and the asymptotic behaviors of these solutions are studied. These results are applied to calculate various characteristics of queueing systems with superposition semi-Markovian arrivals, queueing networks with bulk service, system availability, and continuous superposition remaining and current life processes.