We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bipolar disorder (BD) patients have recently been shown to exhibit increased proinflammatory cytokine levels indicating the role of inflammation in this disease. As inflammatory responses often include complement level alterations and complement production is influenced by cytokines, we aimed to find out whether complement system is activated in BD in a time-dependent manner and complement factors are involved in BD pathogenesis.
Methods
Serum C4, factor B, sC5b-9 and neuron-specific enolase levels were measured by enzyme-linked immunosorbent assay, whereas peripheral blood mononuclear cell messenger RNA (mRNA) expression levels of C1q, C4, factor B and CD55 were measured by real-time polymerase chain reaction in chronic BD patients (n=22), first episode BD patients (n=24) and healthy controls (n=19).
Results
Serum complement levels were significantly reduced in chronic BD patients as compared with first episode BD patients and healthy controls. Serum levels of complement factors showed significant inverse correlation with disease duration, severity of manic symptoms and serum neuron-specific enolase levels. In chronic BD patients, peripheral blood mononuclear cell mRNA expression levels of C1q, C4 and factor B were significantly elevated, whereas the mRNA expression level of the complement inhibitor CD55 was significantly reduced.
Conclusions
Our results suggest that complement factor levels are reduced in BD presumably due to overconsumption of the complement system and complement production is increased at mRNA level possibly as a compensation measure. Complement factors might potentially be used as indicators of disease severity, neuronal loss and cognitive dysfunction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.