The Solonker and Shalazhashan belts are hotly debated tectonic units of the Central Asian Orogenic Belt (CAOB), because they may either represent a Permian or Triassic suture zone of the CAOB, or a rifting zone overprinted on an Early Palaeozoic orogen. Provenance analysis of the Upper Palaeozoic sandstones in these belts may provide useful constraints on this issue. This study collected six sandstone samples from three study areas: the Mandula area of the Solonker Belt, the Quagan Qulu area of the Shalazhashan Belt but close to the Alxa block, and the Enger Us area of the Shalazhashan Belt, for framework petrography, zircon morphology, U–Pb and Lu–Hf isotopic analyses. Framework petrography reveals that the Mandula and Enger Us area samples contain high proportions of volcanic fragments, whereas the samples from the Quagan Qulu area include not only volcanic fragments but also significant amounts of biotite and muscovite. The detrital zircons of the Mandula area and the Enger Us area yield two main age groups: (i) 260–330 Ma, with dominant εHf(t) values of –5 to +12; and (ii) 420–550 Ma, with dominant εHf(t) values of –9 to +9, suggesting that Early Palaeozoic arc-related magmatic rocks and Late Palaeozoic syn-depositional volcanic rocks are the main source rocks. The detrital zircons of the Quagan Qulu area have one main age group of 420–500 Ma and some grains of 0.9–1.1 Ga, 1.4–1.5 Ga, 1.8–1.9 Ga and ~ 2.5 Ga, which derive from the northern margin of the Alxa block. The lithological and fossil assemblages of the Upper Palaeozoic sandstones suggest shallow-marine to deep-water depositional environments and a northward-deepening transition. Based on the zircon spectra, sedimentary environment analysis and previous studies, we argue that the Solonker Belt and the Shalazhashan Belt of the CAOB are in extensional basins of a fore-arc or rifting setting.