In this paper, a wideband ultrathin metasurface absorber is investigated. The proposed absorber comprises a periodic array of a unit cell ring structure. The ring structure and patch inside are tuned to realize the desired frequency bandwidth. The structure has a frequency bandwidth of 7.4 GHz with a center frequency of 15 GHz and fractional bandwidth of 50%. Simulated and measured results show that the absorption at normal incidence is above 90% in the frequency range of 11.3–18.7 GHz. Furthermore, the thickness of the structure is 1.6 mm. The physical mechanism of the metasurface absorber has been analyzed and justified experimentally.