Global Navigation Satellite Systems (GNSS) Doppler measurements are commonly used for velocity-based relative positioning and aiding Inertial Navigation Systems (INS) in signal degraded environments. The aim of this paper is to characterise the Doppler measurements in GNSS harsh multipath environments. In multipath fading situations such as indoor and urban canyon environments, multipath components arrive to the receiver antenna from different paths and directions. These give rise to various Doppler shifts that cause errors in the velocity solution. In this work the Doppler measurements discrepancy characterised by Doppler spread in multipath environments is investigated. By assuming a ‘sphere of scatterers’ model and considering the antenna gain pattern, the theoretical Power Spectral Density (PSD) observed by a receiver is formulated. The theoretical findings are examined using two sets of measurements in dense multipath environments. Global Positioning System (GPS) live signals using non-isotropic antennas with different orientations are used for this purpose. Different motion directions are also examined using different data sets. An Assisted GPS (A-GPS) approach is utilised where the code phase and the navigation data bits are provided by a nearby outdoor antenna. By applying a ‘Block Processing’ technique, an epoch-by-epoch Doppler and velocity estimation is implemented. Herein, the Doppler and velocity measurements accuracy in addition to the Doppler spread characterization are studied. As shown both theoretically and experimentally, in harsh multipath environments the PSD of the observed signals is a function of the scatterers' geometry and the antenna gain pattern. The Doppler estimation accuracies in multipath and multipath-free cases are compared for different ranges of Carrier-to-Noise ratio (C/N0). Theoretical and experimental results revealed inaccurate Doppler estimation and poor Doppler-derived velocity solutions in dense multipath environments.