We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter surveys several different mathematical methods for time-dependent change of quantum states using quantum field theory. The Bloch sphere method is introduced, which can be used to show the physics discussed in Chapter 3, that electronic transitions, or “jumps,” are not instantaneous.
This chapter introduces the basic mathematical formalism for working with quantum information. We discover qubits, or quantum bits, how to combine them using the tensor product, and how to measure them by choosing a basis. We discuss unitary operations, which are elementary transformations on qubits. The chapter ends with a convenient representation of qubits as vectors on the 3-dimensional Bloch sphere, and a useful “cheat sheet,” which summarizes useful definitions and identities.
Appendix D: two-level quantum mechanical systems, or qubits. Description in terms of Bloch vector. Poincaré sphere. Expression of purity. Projection noise in an energy measurement. Description of a set of N coherently driven qubits by a collective Bloch vector.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.