This paper aims to show a sensory-motor coordination control scheme that realizes stable pinching of rigid objects with parallel or nonparallel flat surfaces movable in 2-dimensional vertical plane by a pair of robot fingers with hemispherical ends. The proposed control signal is composed of gravity compensation for fingers, damping shaping, exertion of forces to the object from opposite directions, generation of moments for balancing of rotational moments, and regressors for estimating unknown steady-state terms, all of which neither need the knowledge of object parameters nor use any object sensing data. In other words, stable grasping can be realized by using only finger-joint sensing in a blind manner without using force sensors or tactile sensing. Stability of pinching motion with convergence to the state of force/torque balance is shown through computer simulations and is also proved theoretically.