Winged sea lavender [Limonium lobatum (L.f. Chaz)] is emerging as a significant weed of field crops in southern Australia. Several environmental factors affecting germination and seedling recruitment were examined to provide a better understanding of the behavior of its seedbank. At maturity, weed seeds were dormant for a period of around 2 mo, but dormancy was easily broken with scarification or by pretreatment with 564 mM NaOCL for 30 min, which confirms the role of the seed coat in regulating seed germination. Exposure to light significantly increased germination. Seeds were able to germinate over a broad range of temperatures (5 to 30 C), with maximum germination (~92%) at temperatures between 10 and 30 C. At 20 to 25 C, 50% germination was reached within 1.3 to 2 d, and the predicted base temperature for germination of the two populations ranged from 1.4 to 3.9 C. The NaCl concentration required to inhibit germination by 50% was 230 mM, with some seeds capable of germination at salinity levels as high as 480 mM. These results indicated greater tolerance to salinity in L. lobatum than many other Australian agricultural weed species previously investigated. Seedling emergence was the highest (51% to 57%) for seeds present on the soil surface and was significantly reduced by burial at 1 cm (≤11%) and 2 cm (≤2%), with no emergence at 5 cm. Under field conditions, seedling recruitment varied considerably among the three experimental sites. The level of seedling recruitment was negatively associated with rainfall received at the site, organic carbon (OC) level, and microbial biomass of the soil. Rapid decay of weed seeds in high-OC soils appears to be an important determinant of seedling recruitment in this species and could explain greater occurrence of L. lobatum on soils with low OC and low microbial activity in low-rainfall areas of southern Australia. Furthermore, many such soils in southern Australia are affected by salinity, which would enable L. lobatum to be more competitive with crops and other weeds present at a site.