This research paper proposes a simple image processing technique for automatic lameness detection in dairy cows under farm conditions. Seventy-five cows were selected from a dairy farm and visually assessed for a reference/real lameness score (RLS) as they left the milking parlor, while simultaneously being video-captured. The method employed a designated walking path and video recordings processed through image analysis to derive a new computerized automatic lameness score (ALDS) based on calculated factors from back arch posture. The proposed automatic lameness detection system was calibrated using 12 cows, and the remaining 63 were used to evaluate the diagnostic characteristics of the ALDS. The agreement and correlation between ALDS and RLS were investigated. ALDS demonstrated high diagnostic accuracy with 100% sensitivity and specificity and was found to be 100% accurate with a perfect agreement (ρc = 1) and strong correlation (r = 1, P < 0.001) for lameness detection in binary scores (lame/non-lame). Moreover, the ALDS had a strong agreement (ρc = 0.885) and was highly correlated (r = 0.840; 0.796–1.000 95% confidence interval, P < 0.001) with RLS in ordinal scores (lameness severity; LS1 to LS5). Our findings suggest that the proposed method has the potential to compete with vision-based lameness detection methods in dairy cows in farm conditions.