We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Non-amenability of ${\mathcal {B}}(E)$ has been surprisingly difficult to prove for the classical Banach spaces, but is now known for E = ℓp and E = Lp for all 1 ⩽ p < ∞. However, the arguments are rather indirect: the proof for L1 goes via non-amenability of $\ell ^\infty ({\mathcal {K}}(\ell _1))$ and a transference principle developed by Daws and Runde (Studia Math., 2010).
In this note, we provide a short proof that ${\mathcal {B}}(L_1)$ and some of its subalgebras are non-amenable, which completely bypasses all of this machinery. Our approach is based on classical properties of the ideal of representable operators on L1, and shows that ${\mathcal {B}}(L_1)$ is not even approximately amenable.
We prove a quantized version of a theorem by M. V. Sheĭnberg: A uniform algebra equipped with its canonical, i.e., minimal, operator space structure is operator amenable if and only if it is a commutative ${{C}^{*}}$-algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.