The role of sensory experience in the development and plasticity of
the visual system has been widely studied. It has generally been reported
that once animals reach adulthood, experience-dependent visual plasticity
is reduced. We have found that visual experience is not needed for the
refinement of receptive fields (RFs) in the superior colliculus (SC) but
instead is necessary to maintain them in adulthood (Carrasco et al., 2005). Without light exposure, RFs in SC of hamsters
refine by postnatal day 60 as usual but then enlarge, presumably reducing
visual acuity. In this study we examine whether a brief period of light
exposure during early postnatal development would be sufficient to prevent
RF enlargement in adulthood, and whether prolonged light exposure in
adulthood could reverse the deprivation-induced increase in RF size. We
found that an early postnatal period of at least 30 days of visual
experience was sufficient to maintain refined RFs in the adult SC.
Prolonged visual experience in adulthood could not reverse the RF
enlargement resulting from long-term dark rearing, reflecting a loss of
plasticity at this age. Our results suggest that, unlike in visual cortex,
dark rearing does not indefinitely extend the critical period of
plasticity in SC. Rather, there is a limited time window when early
experience can protect RFs from the detrimental effects of visual
deprivation in adulthood. These results contribute to understanding adult
brain plasticity and argue for the importance of early visual experience
in protecting the adult visual system.