We show that if the summability means in the Fourier inversion formula for a tempered distribution f ∈ S′(ℝn) converge to zero pointwise in an open set Ω, and if those means are locally bounded in L1(Ω), then Ω ⊂ ℝn\supp f. We prove this for several summability procedures, in particular for Abel summability, Cesàro summability and Gauss-Weierstrass summability.