We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.
We propose non-asymptotic controls of the cumulative distribution function
$\mathbb{P}(|X_{t}|\ge \varepsilon)$
, for any
$t>0$
,
$\varepsilon>0$
and any Lévy process X such that its Lévy density is bounded from above by the density of an
$\alpha$
-stable-type Lévy process in a neighborhood of the origin.
Mixed-level orthogonal arrays are basic structures in experimental design. We develop three algorithms that compute Rao- and Gilbert-Varshamov-type bounds for mixed-level orthogonal arrays. The computational complexity of the terms involved in the original combinatorial representations of these bounds can grow fast as the parameters of the arrays increase and this justifies the construction of these algorithms. The first is a recursive algorithm that computes the bounds exactly, the second is based on an asymptotic analysis, and the third is a simulation algorithm. They are all based on the representation of the combinatorial expressions that appear in the bounds as expectations involving a symmetric random walk. The Markov property of the underlying random walk gives the recursive formula to compute the expectations. A large deviation (LD) analysis of the expectations provides the asymptotic algorithm. The asymptotically optimal importance sampling (IS) of the same expectation provides the simulation algorithm. Both the LD analysis and the construction of the IS algorithm use a representation of these problems as a sequence of stochastic optimal control problems converging to a limit calculus of a variations problem. The construction of the IS algorithm uses a recently discovered method of using subsolutions to the Hamilton-Jacobi-Bellman equations associated with the limit problem.
Our main result is showing the asymptotic existence of tight $\text{OMEPs}$. More precisely, for each fixed number $k$ of rows, and with the exception of $\text{OMEPs}$ of the form $2\times 2\times \cdot \cdot \cdot 2\times 2s\,//\,4s\,\,$ with $s$ odd and with more than three rows, there are only a finite number of tight $\text{OMEP}$ parameters for which the tight $\text{OMEP}$ does not exist.
The structure is determined for the existence of some amicable weighing matrices. This is then used to prove the existence and non-existence of some amicable orthogonal designs in powers of two.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.