Cet article de survol est le résumé de la conférence Coxeter-James de l'auteur, prononcée à la réunion d'hiver 1993 de la Société Mathématique du Canada.
La théorie de Morse décrit les liens entre la topologie d'une variété et la topologie des points critiques d'une fonction sur cette variété. La fonctionnelle d'énergie pour les applications d'une surface dans une variété, dont les points critiques seront des applications harmoniques et parfois holomorphes, et la fonctionnelle de Yang-Mills pour des connections sur une variété de dimension quatre sont deux cas en dimension infinie pour lesquels la théorie de Morse ne tient pas. Néanmois, dans les deux cas, on peut récupérer une quantité étonnante d'information, pourvu qu'on stabilise par rapport à un degré ou une charge qui sont des données du problème. Les preuves recyclent des résultats de la théorie de l'homotopie des années '70, et les combinent à des idées de géométrie complexe pour donner de jolis modèles des espaces en cause en termes de "particules". Nous espérons donner un survol général et accessible des idées utilisées.