This paper exploits a natural symmetry present in a 3D robot in order to achieve asymptotically stable steering. The robot under study is composed of 5-links and unactuated point feet; it has 9 DoF (degree-of-freedom) in the single-support phase and six actuators. The control design begins with a hybrid feedback controller that stabilizes a straight-line walking gait for the 3D bipedal robot. The closed-loop system (i.e., robot plus controller) is shown to be equivariant under yaw rotations, and this property is used to construct a modification of the controller that has a local, but uniform, input-to-state stability (ISS) property, where the input is the desired turning direction. The resulting controller is capable of adjusting the net yaw rotation of the robot over a step in order to steer the robot along paths with mild curvature. An interesting feature of this work is that one is able to control the robot's motion along a curved path using only a single predefined periodic motion.