We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We will be looking at quadratic polynomials having positive discriminant and having a long string of primes as initial values. We find conditions tantamount to this phenomenon involving another long string of primes for which the discriminant of the polynomial is a quadratic non-residue. Using the generalized Riemann hypothesis (GRH) we are able to determine all discriminants satisfying this connection.
Solutions of Xk + Yk = Zk in invertible pairwise commuting rational 2 × 2 matrices are determined for k = 3, 4, 6, 9, from the analogous results of A. Aigner for algebraic number fields.
Let h(m) denote the class number of the quadratic field Q(√m). In this paper necessary and sufficient conditions for h (m) to be divisible by 16 are determined when m = −p, where p is a prime congruent to 1 modulo 8, and when m = −2p, where p is a prime congruent to ±1 modulo 8.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.