We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K$ be a finite extension of $\mathbb{Q}_{p}$ and let $\bar{\unicode[STIX]{x1D70C}}$ be a continuous, absolutely irreducible representation of its absolute Galois group with values in a finite field of characteristic $p$. We prove that the Galois representations that become crystalline of a fixed regular weight after an abelian extension are Zariski-dense in the generic fiber of the universal deformation ring of $\bar{\unicode[STIX]{x1D70C}}$. In fact we deduce this from a similar density result for the space of trianguline representations. This uses an embedding of eigenvarieties for unitary groups into the spaces of trianguline representations as well as the corresponding density claim for eigenvarieties as a global input.
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.
Kloosterman sums for a finite field $\mathbb{F}_{p}$ arise as Frobenius trace functions of certain local systems defined over $\mathbb{G}_{m,\mathbb{F}_{p}}$. The moments of Kloosterman sums calculate the Frobenius traces on the cohomology of tensor powers (or symmetric powers, exterior powers, etc.) of these local systems. We show that when $p$ ranges over all primes, the moments of the corresponding Kloosterman sums for $\mathbb{F}_{p}$ arise as Frobenius traces on a continuous $\ell$-adic representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ that comes from geometry. We also give bounds on the ramification of these Galois representations. All of this is done in the generality of Kloosterman sheaves attached to reductive groups introduced by Heinloth, Ngô and Yun [Ann. of Math. (2) 177 (2013), 241–310]. As an application, we give proofs of conjectures of Evans [Proc. Amer. Math. Soc. 138 (2010), 517–531; Israel J. Math. 175 (2010), 349–362] expressing the seventh and eighth symmetric power moments of the classical Kloosterman sum in terms of Fourier coefficients of explicit modular forms. The proof for the eighth symmetric power moment conjecture relies on the computation done in Appendix B by C. Vincent.
We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc.26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$. We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$-adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc.26 (1) (2013), 199–225).
Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds over a number field. We work out their method in detail, showing that essentially all known counterexamples to the integral Hodge conjecture over the complex numbers can be made to work over a number field.
We study the possible weights of an irreducible two-dimensional mod p representation of which is modular in the sense that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.
Let $f$ be a newform of weight $2k-2$ and level 1. In this paper we provide evidence for the Bloch–Kato conjecture for modular forms. We demonstrate an implication that under suitable hypotheses if $\varpi \mid L_{\rm alg}(k,f)$ then $p \mid \# H_{f}(\mathbb{Q},W_{f}(1-k))$ where $p$ is a suitably chosen prime and $\varpi$ a uniformizer of a finite extension $K/\mathbb{Q}_{p}$. We demonstrate this by establishing a congruence between the Saito–Kurokawa lift $F_{f}$ of $f$ and a cuspidal Siegel eigenform $G$ that is not a Saito–Kurokawa lift. We then examine what this congruence says in terms of Galois representations to produce a non-trivial $p$-torsion element in $H_{f}^1(\mathbb{Q},W_{f}(1-k))$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.