We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In previous papers, Barr and Raphael investigated the situation of a topological space $Y$ and a subspace $X$ such that the induced map $C(Y)\,\to \,C(X)$ is an epimorphism in the category $\mathcal{C}\mathcal{R}$ of commutative rings (with units). We call such an embedding a $\mathcal{C}\mathcal{R}$-epic embedding and we say that $X$ is absolute $\mathcal{C}\mathcal{R}$-epic if every embedding of $X$ is $\mathcal{C}\mathcal{R}$-epic. We continue this investigation. Our most notable result shows that a Lindelöf space $X$ is absolute $\mathcal{C}\mathcal{R}$-epic if a countable intersection of $\beta X$-neighbourhoods of $X$ is a $\beta X$-neighbourhood of $X$. This condition is stable under countable sums, the formation of closed subspaces, cozero-subspaces, and being the domain or codomain of a perfect map. A strengthening of the Lindelöf property leads to a new class with the same closure properties that is also closed under finite products. Moreover, all $\sigma $-compact spaces and all Lindelöf $P$-spaces satisfy this stronger condition. We get some results in the non-Lindelöf case that are sufficient to show that the Dieudonné plank and some closely related spaces are absolute $\mathcal{C}\mathcal{R}$-epic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.