We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove $\times a \times b$ measure rigidity for multiplicatively independent pairs when $a\in \mathbb {N}$ and $b>1$ is a ‘specified’ real number (the b-expansion of $1$ has a tail or bounded runs of $0$s) under a positive entropy condition. This is done by proving a mean decay of the Fourier series of the point masses average along $\times b$ orbits. We also prove a quantitative version of this decay under stronger conditions on the $\times a$ invariant measure. The quantitative version together with the $\times b$ invariance of the limit measure is a step toward a general Host-type pointwise equidistribution theorem in which the equidistribution is for Parry measure instead of Lebesgue. We show that finite memory length measures on the a-shift meet the mentioned conditions for mean convergence. Our main proof relies on techniques of Hochman.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.