Resonances with spiral density waves or the Galactic bar can cause structure in local velocity distributions (also known as phase space). Because resonances are narrow, it is possible to place tight constraints on a pattern speed or the shape of the underlying gravitational potential.
Interference between multiple spiral patterns can cause localized bursts of star formation and discontinuities or kinks in the spiral arm morphology. Numerical simulations suggest that boundaries between different dominant patterns in the disk can manifest in local velocity distributions as gaps that are associated with specific orbital periods or angular momentum values. Recent studies have detected age gradients that may be associated with the appearance of spiral features such as armlets and spurs.
When patterns grow or vary in speed, resonances can be swept through the disk causing changes in the velocity distributions. Evidence of resonance capture or resonance crossing can be used to place constraints on the past history of patterns in the disk. The X-shaped Galactic bulge may have been caused by stars captured into vertical resonance with the Bar.
Disturbances in the Galactic disk, such as from a past merger, can cause an uneven distribution of disk stars in action angles. Subsequently the stellar distribution becomes more tightly wound in phase space. Phase wrapping can cause a series of shell like features in either real space or in a local velocity distribution. The spacing between features is dependent on the time since the disturbance.