Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:23:22.092Z Has data issue: false hasContentIssue false

Body plan of Dickinsonia, the oldest mobile animals

Published online by Cambridge University Press:  23 February 2023

Andrey Yu IVANTSOV*
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
Maria ZAKREVSKAYA
Affiliation:
Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
*
*Corresponding author. Email: [email protected]

Abstract

Materials collected on the territory of the southeastern White Sea area, including diversely preserved body imprints, combined body-trace fossils, specimens with signs of intravital damage and regeneration, and extended ontogenetic series, make it possible to significantly widen the data on the body plan and biology of Dickinsonia, the oldest known mobile animal, included in the Late Precambrian taxon of high rank, Proarticulata. A number of reconstructed anatomical features were added to the obvious directly observed features of Dickinsonia, such as a consistent body shape lacking lateral appendages and temporary outgrowths, transverse differentiation, and anterior–posterior polarity. These reconstructed features include dorsoventral polarity, ciliated mucus-secreting epithelium underlain by a basal lamina, two rows of blind food-gathering pockets, absence of a through-gut, nervous system of diffusive type, axial support band and muscle fibres. Such a set of features indicates the affinity of Dickinsonia and Proarticulata as a whole (the only known Ediacaran Metazoa) to Urbilateria, a hypothetical ancestor of bilaterally symmetrical animals.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Albani, A. E., Bengtson, S. Canfield, D. E., Riboulleau, A., Rollion Bard, C., Macchiarelli, R., Pemba, L. N., Hammarlund, E., Meunier, A., Moubiya Mouele, I., Benzerara, K., Bernard, S., Boulvais, P., Chaussidon, M., Cesari, C., Fontaine, C., Chi-Fru, E., Garcia Ruiz, J. M., Gauthier-Lafaye, F., Mazurier, A., Pierson-Wickmann, A. C., Rouxel, O., Trentesaux, A., Vecoli, M., Versteegh, G. J. M., White, L., Whitehouse, M. & Bekker, A. 2014. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS ONE 9, e99438.CrossRefGoogle ScholarPubMed
Balavoine, G. & Adoutte, A. 2003. The segmented Urbilateria: a testable scenario. Integrative and Comparative Biology 43, 137–47.CrossRefGoogle ScholarPubMed
Bobkov, N. I., Kolesnikov, A. V., Maslov, A. V. & Grazhdankin, D. V. 2019. The occurrence of Dickinsonia in non-marine facies. Estudios Geologicos 75, e096.CrossRefGoogle Scholar
Bobrovskiy, I., Hope, J. M., Ivantsov, A. Y., Nettersheim, B. J., Hallman, C. & Brocks, J. J. 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361, 1246–9.CrossRefGoogle ScholarPubMed
Bobrovskiy, I., Krasnova, A., Ivantsov, A. Y., Luzhnaya (Serezhnikova), E. A. & Brocks, J. J. 2019. Simple sediment rheology explains the Ediacara biota preservation. Nature Ecology & Evolution 3, 582–9.CrossRefGoogle ScholarPubMed
Bobrovskiy, I., Nagovitsyn, A., Hope, J. M., Luzhnaya, E. & Brocks, J. J. 2022. Guts, gut contents, and feeding strategies of Ediacaran animals. Current Biology 32, 18.CrossRefGoogle ScholarPubMed
Brasier, M. D. & Antcliffe, J. B. 2008. Dickinsonia from Ediacara: a new look at morphology and body construction. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 311–23.CrossRefGoogle Scholar
Brunet, T., Lauri, A. & Arendt, D. 2015. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. Bioessays 37, 836–50.CrossRefGoogle ScholarPubMed
Buatois, L. A. & Mangano, M. G. 2016. Ediacaran ecosystems and the dawn of animals. In Mángano, M. G. & Buatois, L. A. (eds) The trace-fossil record of major evolutionary events, vol. 1: Precambrian and Paleozoic, 2772. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Cannon, J. T., Vellutini, B. C., Smith, J. III, Ronquist, F., Jondelius, U. & Hejnol, A. 2016. Xenacoelomorpha is the sister group to Nephrozoa. Nature 530, 8994.CrossRefGoogle ScholarPubMed
Chen, Z., Zhou, C., Yuan, X. & Xiao, S. 2019. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573, 412–5.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1989. Early metazoans. Science Progress 3, 8199.Google Scholar
De Robertis, E. M. & Sasai, Y. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380, 3740.CrossRefGoogle ScholarPubMed
Droser, M. L., Gehling, J. G., Tarhan, L. G., Evans, S. D., Hall, C. M. S., Hughes, I. V., Hughes, E. B., Dzaugis, M. E., Dzaugis, M. P., Dzaugis, P. W. & Rice, D. 2019. Piecing together the puzzle of the Ediacara biota: excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 513, 132–45.CrossRefGoogle Scholar
Dunn, F. S., Liu, A. G. & Donoghue, P. C. J. 2018. Ediacaran developmental biology. Biological Reviews 93, 914–32.CrossRefGoogle ScholarPubMed
Dzik, J. 1999. Evolutionary origin of asymmetry in early metazoan animals. In Palyi, G., Zucchi, C. & Caglioti, L. (eds) Advances in biochirality, 153–90. Oxford: Elsevier Science.CrossRefGoogle Scholar
Dzik, J. 2000. The origin of the mineral skeleton in chordates. Journal of Evolutionary Biology 31, 105–54.CrossRefGoogle Scholar
Dzik, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology 43, 114–26.CrossRefGoogle ScholarPubMed
Dzik, J. & Ivantsov, A. Y. 2002. Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from northern Russia. Neues Jahrbuch für Geologie und Paläontologie 7, 385–96.CrossRefGoogle Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. & Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–7.CrossRefGoogle ScholarPubMed
Evans, S. D., Droser, M. L. & Erwin, D. H. 2021b. Developmental processes in Ediacara macrofossils. Proceedings of the Royal Society B 288, 20203055.CrossRefGoogle ScholarPubMed
Evans, S. D., Droser, M. L. & Gehling, J. G. 2017. Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata. PLoS ONE 12, 115.CrossRefGoogle ScholarPubMed
Evans, S. D., Dzaugis, P. W., Droser, M. L. & Gehling, J. G. 2018. You can get anything you want from Alice's Restaurant Bed: exceptional preservation and an unusual fossil assemblage from a newly excavated bed (Ediacara Member, Nilpena, South Australia). Australian Journal of Earth Sciences 67, 873–83.CrossRefGoogle Scholar
Evans, S. D., Gehling, J. G. & Droser, M. L. 2019a. Slime travelers: early evidence of animal mobility and feeding in an organic mat world. Geobiology 17, 490509.CrossRefGoogle Scholar
Evans, S. D., Gehling, J. G., Erwin, D. H. & Droser, M. L. 2021a. Ediacara growing pains: modular addition and development in Dickinsonia costata. Paleobiology 48, 8398.CrossRefGoogle Scholar
Evans, S. D., Huang, W., Gehling, J. G., Kisailus, D. & Droser, M. L. 2019b. Stretched, mangled, and torn: responses of the Ediacaran fossil Dickinsonia to variable forces. Geology 47, 1049–53.CrossRefGoogle Scholar
Evans, S. D., Hughes, I. V., Gehling, J. G. & Droser, M. L. 2020. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proceedings of the National Academy of Sciences 117, 7845–50.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. 1983. Non-skeletal fauna of Podolian Dniester area. In Velikanov, V. A., Aseeva, E.A. & Fedonkin, M. A. (eds) The Vendian of Ukraine, 128–39. Kiev: Naukova Dumka. [In Russian].Google Scholar
Fedonkin, М. А. 1990. Systematic description of Vendian Metazoa. In Sokolov, B. S. & Iwanowski, A. B. (eds) The Vendian System. Paleontology. Vol. 1, 71120. Berlin: Springer.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Memoir of the Geological Society of India 20, 181224.Google Scholar
Gehling, J. G., Droser, M. L., Jensen, S. R. & Runnegar, B. N. 2005. Ediacara organisms: relating form to function. In Briggs, D. (ed.) Evolving form and function: fossils and development, 4366. New Haven: Yale University Press.Google Scholar
Glaessner, M. F. 1959. The oldest fossil faunas in South Australia. Geologische Rundschau 47, 522–31.CrossRefGoogle Scholar
Glaessner, M. F. & Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology 9, 599628.Google Scholar
Gold, D. A., Runnegar, B., Gehling, J. G. & Jacobs, D. K. 2015. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evolution & Development 17, 315–24.CrossRefGoogle ScholarPubMed
Grazhdankin, D. V. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30, 203–21.2.0.CO;2>CrossRefGoogle Scholar
Haszprunar, G. 2016. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). Organisms Diversity & Evolution 16, 363–89.CrossRefGoogle Scholar
Hejnol, A. & Pang, K. 2016. Xenacoelomorpha's significance for understanding bilaterian evolution. Current Opinion in Genetics & Development 39, 4854.CrossRefGoogle ScholarPubMed
Hoekzema, R. S., Brasier, M. D., Dunn, F. S. & Liu, A. G. 2017. Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proceedings of the Royal Society B: Biological Sciences 284, 19.Google ScholarPubMed
Ivantsov, A. Y. 2001a. Traces of active moving of large late Vendian Metazoa over the sediment surface. In Ponomarenko, A. G., Rozanov, A. Y. & Fedonkin, M. A. (eds) Ecosystem restructure and the evolution of the biosphere vol. 4, 119–20. Moscow: PIN RAS. [In Russian].Google Scholar
Ivantsov, A. Y. 2001b. Vendia and other Precambrian ‘arthropods’. Paleontological Journal 35, 335–43.Google Scholar
Ivantsov, A. Y. 2004. New Proarticulata from the Vendian of the Arkhangel'sk Region. Paleontological Journal 38, 247–53.Google Scholar
Ivantsov, A. Y. 2007. Small Vendian transversely segmented fossils. Paleontological Journal 41, 113–22.CrossRefGoogle Scholar
Ivantsov, A. Y. 2008. Proarticulata – a phylum of Metazoan animals that became extinct in the Precambrian. Evolutionary morphology of animals. A contribution to the 100th anniversary of the birth of academician Ivanov A. V. Part I: Proceedings of the St. Petersburg Society of Naturalists Vol. 97, 3242. St Petersburg: St Petersburg University, [In Russian].Google Scholar
Ivantsov, A. Y. 2011. Feeding traces of Proarticulata – the Vendian Metazoa. Paleontological Journal 45, 237–48.CrossRefGoogle Scholar
Ivantsov, A. Y. 2013. Trace fossils of Precambrian Metazoans ‘Vendobionta’ and ‘Mollusks’. Stratigraphy and Geological Correlation 21, 252–64.CrossRefGoogle Scholar
Ivantsov, A. Y., Fedonkin, M. A., Nagovitsyn, A. L. & Zakrevskaya, M. A. 2019a. Cephalonega, a new generic name and the system of Vendian Proarticulata. Palaeontological Journal 53, 447–54.CrossRefGoogle Scholar
Ivantsov, A. Y. & Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Sciences 385A, 618–22.Google Scholar
Ivantsov, A. Y., Nagovitsyn, A. L. & Zakrevskaya, M. A. 2019b. Traces of locomotion of Ediacaran macroorganisms. Geosciences 9, 395.CrossRefGoogle Scholar
Ivantsov, A. Y. & Zakrevskaya, M. A. 2021a. Dickinsonia: mobile and adhered. Geological Magazine 159, 116.Google Scholar
Ivantsov, A. Y. & Zakrevskaya, M. A. 2021b. Trilobozoa, Precambrian tri-radial organisms. Paleontological Journal 55, 1327.CrossRefGoogle Scholar
Ivantsov, A. Y. & Zakrevskaya, M. A. 2021c. Symmetry of Vendobionta (Late Precambrian Metazoa). Paleontological Journal 55, 312.CrossRefGoogle Scholar
Ivantsov, A. Y. & Zakrevskaya, M. A. 2022. Dickinsonia costata of the Winter Mountains: features of morphology and ontogenesis. Precambrian Research 379, 106788, 116.CrossRefGoogle Scholar
Ivantsov, A. Y., Zakrevskaya, M. A. & Nagovitsyn, A. L. 2019c. Morphology of integuments of the Precambrian animals, Proarticulata. Invertebrate Zoology 16, 1926.CrossRefGoogle Scholar
Ivantsov, A. Y., Zakrevskaya, M. A. & Nagovitsyn, A. L. 2020a. The first invalids in the ‘Garden of Ediacara’ paradise. Proceedings of the Arkhangelsk Center of the Russian Geographical Society 8, 114–9. Arkhangelsk. [In Russian].Google Scholar
Ivantsov, A. Y., Zakrevskaya, M. A., Nagovitsyn, A. L., Krasnova, A., Bobrovskiy, I. & Luzhnaya (Serezhnikova), E. 2020b. Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran). Journal of Paleontology 94, 1019–33.CrossRefGoogle Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages. In Lipps, J. & Signor, P. (eds) Origin and early evolution of the Metazoa, 131–76. New York: Plenum Press.CrossRefGoogle Scholar
Jenkins, R. J. F. 1996. Aspects of the geological setting and palaeobiology of the Ediacara assemblage. In Davies, M., Twidale, C. R. & Tyler, M. J. (eds) Natural history of the Flinders Ranges vol. 7, 3345. Richmond, South Australia: Royal Society of South Australia.Google Scholar
Lauri, A., Brunet, T., Handberg-Thorsager, M., Fischer, A. H. L., Simakov, O., Steinmetz, P. R. H., Tomer, R., Keller, P. J. & Arendt, D. 2014. Development of the annelid axochord: insights into notochord evolution. Science 345, 1365–8.CrossRefGoogle ScholarPubMed
Malakhov, V. V. 2004. News ideas on the origin of Bilateria (an attempt to use the evolutionary tetrad method). Fundamental Zoological Researches: Theory and Methods, 89113, Moscow-St.-Petersburg: KMK Scientific Press Ltd. [In Russian].Google Scholar
Mangano, M. G. & Buatois, L. A. 2020. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 10, 20190103.CrossRefGoogle ScholarPubMed
Menon, L. R., McIlroy, D. & Brasier, M. D. 2013. Evidence for cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology 41, 895–8.CrossRefGoogle Scholar
Reid, L. M., García-Bellido, D. C. & Gehling, J. G. 2018. An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia. Journal of Paleontology 92, 313–22.CrossRefGoogle Scholar
Retallack, G. J. 2007. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31, 215–40.CrossRefGoogle Scholar
Retallack, G. J. 2013. Ediacaran life on land. Nature 493, 8992.CrossRefGoogle ScholarPubMed
Retallack, G. J., Matthews, N. A., Master, S., Khangar, R. G. & Khan, M. 2021. Dickinsonia discovered in India and late Ediacaran biogeography. Gondwana Research 90, 165–70.CrossRefGoogle Scholar
Rozhnov, S. V. 2009. Development of the trophic structure of Vendian and Early Paleozoic marine communities. Paleontological Journal 43, 1364–77.CrossRefGoogle Scholar
Runnegar, B. 1982. Oxygen requirements, biology and phylogenetic significance of the Late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6, 223–39.CrossRefGoogle Scholar
Runnegar, B. 2021. Following the logic behind biological interpretations of the Ediacaran biotas. Geological Magazine 159, 1093–117.Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22, 229–39.CrossRefGoogle Scholar
Seilacher, A., Grazhdankin, D. & Leguta, A. 2003. Ediacaran biota: the dawn of animal life in the shadow of giant protests. Paleontological Research 7, 4354.CrossRefGoogle Scholar
Sperling, E. A. & Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution & Development 12, 201–9.CrossRefGoogle ScholarPubMed
Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 71, 212–24.Google Scholar
Sprigg, R. C. 1949. Early Cambrian ‘Jellyfishes’ of Ediacara, South Australia and Mouth John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia 73, 7299.Google Scholar
Valentine, J. W. 1992. Dickinsonia as a polypoid organism. Paleobiology 18, 378–82.CrossRefGoogle Scholar
Wade, M. 1972. Dickinsonia: polychaete worms from the Late Precambrian Ediacara fauna, South Australia. Memoirs of the Queensland Museum 16, 171–90.Google Scholar
Wang, X.-P., Chen, Z., Pang, K., Zhou, C.-M., Xiao, S., Wan, B. & Yuan, X.-L. 2021. Dickinsonia from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China. Paleoworld 30, 602–9.CrossRefGoogle Scholar
Yang, C., Rooney, A. D., Condon, D. J., Li, X.-H., Grazhdankin, D. V., Bowyer, F. T., Hu, C., Macdonald, F. A. & Zhu, M. 2021. The tempo of Ediacaran evolution. Science Advances 7, eabi9643.CrossRefGoogle ScholarPubMed
Zakrevskaya, M. A. & Ivantsov, A. Y. 2017. Dickinsonia costata – the first evidence of neoteny in Ediacaran organisms. Invertebrate Zoology 14, 92–8.CrossRefGoogle Scholar
Zhang, X. & Reitner, J. 2006. A fresh look at Dickinsonia: removing it from Vendobionta. Acta Geologica Sinica 80, 635–42.Google Scholar