Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T11:27:52.523Z Has data issue: false hasContentIssue false

New mock theta functions and formulas for basic hypergeometric series

Published online by Cambridge University Press:  22 August 2023

Olivia X. M. Yao*
Affiliation:
School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, P. R. China ([email protected])

Abstract

In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, G. E. and Hickerson, D., Ramanujan’s lost notebook VII: the sixth order mock theta functions, Adv. Math. 89 (1) (1991), 60105.CrossRefGoogle Scholar
Appell, M. P., Sur les fonctions doublement périodiques de troisième espèce, Ann. Sci. Eć. Norm. Supér. 1 (1) (1884), 135164.CrossRefGoogle Scholar
Berndt, B. and Chan, S. H., Sixth order mock theta functions, Adv. Math. 216(2) (2007), 771786.CrossRefGoogle Scholar
Bringmann, K. and Ono, K., Dyson’s ranks and Maass forms, Ann. Math. 171 (1) (2010), 419449.CrossRefGoogle Scholar
Chen, D. D. and Wang, L. Q., Representations of mock theta functions, Adv. Math. 365 (2020), .CrossRefGoogle Scholar
Choi, Y. -S., Tenth order mock theta functions in Ramanujan’s lost notebook, Invent. Math. 136 (1999), 497569.CrossRefGoogle Scholar
Choi, Y. -S., Tenth order mock theta functions in Ramanujan’s lost notebook. II, Adv. Math. 156 (2) (2000), 180285.CrossRefGoogle Scholar
Choi, Y. -S., Tenth order mock theta functions in Ramanujan’s lost notebook. IV, Trans. Amer. Math. Soc. 354 (2) (2002), 705733.CrossRefGoogle Scholar
Choi, Y. -S., Tenth order mock theta functions in Ramanujan’s lost notebook. III, Proc. Lond. Math. Soc. 94 (1) (2007), 2652.CrossRefGoogle Scholar
Cui, S. P. and Gu, N. S. S., Some new mock theta functions, Adv. Appl. Math. 131 (2021), .CrossRefGoogle Scholar
Cui, S. P., Gu, N. S. S. and Hao, L. J., On second and eighth order mock theta functions, Ramanujan J. 50 (2019), 393422.CrossRefGoogle Scholar
Frye, J. and Garvan, F. G., Automatic proof of theta-function identities, elliptic integrals, elliptic functions and modular forms in quantum field theory, Texts & Monographs in Symbolic Computation, (Springer, Cham, 2019).Google Scholar
Gasper, G. and Rahman, M., Basic hypergeometric series, Encyclopedia of Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Gordon, B. and McIntosh, R. J., Some eighth order mock theta functions, J. Lond. Math. Soc. 62 (2) (2000), 321335.CrossRefGoogle Scholar
Gordon, B. and McIntosh, R. J., A survey of classical mock theta functions, in Developments in Mathematics. Developments in Mathematics, Volume 23 New York: Springer, , (2012).Google Scholar
Gu, N. S. S. and Hao, L. J., On some new mock theta functions, J. Aust. Math. Soc. 107 (1) (2019), 5366.CrossRefGoogle Scholar
Gu, N. S. S. and Liu, J., Families of multisums as mock theta functions, Adv. Appl. Math. 79 (2016), 98124.CrossRefGoogle Scholar
Hickerson, D. R. and Mortenson, E. T., Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. 109 (2) (2014), 382422.CrossRefGoogle Scholar
Lerch, M., Poznámky k theorii funkcí elliptických, Rozpr. Čes. Akad. Císaře Františka Josefa pro vědy, slovesn. Umění, Praze (II C1) I24 (1892), 465480.Google Scholar
Liu, Z. -G., A q-series expansion formula and the Askey-Wilson polynomials, Ramanujan J. 30 (2013), 193210.CrossRefGoogle Scholar
Liu, Z. -G., On the q-derivative and q-series expansions, Int. J. Number Theory 9 (8) (2013), 20692089.CrossRefGoogle Scholar
Lovejoy, J. and Osburn, R., The Bailey chain and mock theta functions, Adv. Math. 238 (2013), 442458.CrossRefGoogle Scholar
Lovejoy, J. and Osburn, R., q-Hypergeometric double sums as mock theta functions, Pacific J. Math. 264 (1) (2013), 151162.CrossRefGoogle Scholar
Lovejoy, J. and Osburn, R., Mock theta double sums, Glasg. Math. J. 59 (2) (2017), 323348.CrossRefGoogle Scholar
McIntosh, R. J., Second order mock theta functions, Canad. Math. Bull. 50 (2) (2007), 284290.CrossRefGoogle Scholar
Mortenson, E. T., On Hecke-type double-sums and general string functions for the affine Lie algebra $A_1^{(1)}$, Ramanujan J. https://doi.org/10.1007/s11139-023-00737-x.Google Scholar
Mortenson, E. T., Postnova, O. and Solovyev, D., On string functions and double-sum formulas, Res. Math. Sci. 10 (2023), .CrossRefGoogle Scholar
Watson, G. N., The final problem: an account of the mock theta functions, J. Lond. Math. Soc. 11 (1) (1936), 5580.CrossRefGoogle Scholar
Watson, G. N., The mock theta functions (2), Proc. Lond. Math. Soc. 42 (2) (1936), 274304.Google Scholar
Yao, O. X. M., New families of mock theta functions and partial fraction decomposition, Adv. Appl. Math. 138 (2022), .CrossRefGoogle Scholar
Zagier, D., Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann, Astérisque 326 (2009), 143164.Google Scholar
Zhang, Z. and Li, X., Mock theta functions in terms of q-hypergeometric double sums, Int. J. Number Theory 14(6) (2018), 17151728.CrossRefGoogle Scholar
Zwegers, S., Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002.Google Scholar