1 Introduction
Let $\mathbb {N}$ be the set of all nonnegative integers. For $A\subseteq \mathbb {N} $ , $h\geq 2$ , the h-fold sum of A, denoted $hA$ , is the set of sums of h not necessarily distinct elements of A and $h^{\wedge }A$ is the set of sums of h distinct elements of A. Let W be a nonempty subset of $\mathbb {N}$ . Denote by ${F}^{\ast }(W)$ the set of all finite, nonempty subsets of W. Given positive integers $g,h \geq 2$ , denote
For $i = 0,1,\ldots ,h-1$ , let $W_i^{(h)}=\{n\in \mathbb {N}: n\equiv i\pmod h\}$ and let
The set A is an asymptotic basis of order h if $hA$ contains all sufficiently large integers. An asymptotic basis A of order h is minimal if $A\setminus \{a\}$ is not an asymptotic basis of order h for every nonnegative integer $a\in A$ . In 1974, Nathanson [Reference Nathanson4] first gave an explicit construction of a minimal asymptotic basis of order $2$ by using properties of binary representations. In 2010, Jańczak and Schoen [Reference Jańczak and Schoen3] constructed a dense minimal asymptotic basis of order two. Nathanson’s method has been widely used in the construction of minimal asymptotic bases. For related problems concerning minimal asymptotic bases, see [Reference Chen and Tang2, Reference Nathanson6, Reference Sun7]. The study of asymptotic bases and minimal asymptotic bases is closely related to the famous Erdős–Turán conjecture in additive number theory (see [Reference Alladi and Krantz1, Reference Nathanson, Chudnovsky and Chudnovsky5]).
It is natural to introduce a parallel concept of minimal restricted asymptotic bases. We call A a restricted asymptotic basis of order h if $h^{\wedge }A$ contains all sufficiently large integers. A restricted asymptotic basis A of order h is minimal if $A\setminus \{a\}$ is not a restricted asymptotic basis of order h for every nonnegative integer $a\in A$ . Does there exist a minimal restricted asymptotic basis of order h?
Our study begins with a result of Sun and Tao on minimal asymptotic bases.
Theorem 1.1 [Reference Sun and Tao8]
Let $h \geq 2$ . Then for any $g \geq h$ , the set $\mathcal {A}_{g,h}$ is a minimal asymptotic basis of order h.
We obtain the following results.
Proposition 1.2. For $k\geq 0$ , $g\geq 2$ :
-
(1) $2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}$ ;
-
(2) $2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$ ;
-
(3) $2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$ .
Theorem 1.3. Let $h\geq 4$ . Then for any $g\geq \max \{h,5\}$ , the set $\mathcal {A}_{g,h}$ is a minimal restricted asymptotic basis of order h.
2 A preliminary lemma
Lemma 2.1. Given positive integers $h\geq 2$ , $g\geq 5$ and $u\geq 2$ , let the g-adic representation of n be
where $0 \leq i_1<\cdots <i_{u}$ and $1\leq e_j\leq g-1$ for $j=1,\ldots ,u-1$ . Then $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .
Proof. If $i_{u-1}<i_{u}-1$ , or if $i_{u-1}= i_{u}-1$ , $e_{u-1}\notin \{1,g-1\}$ , then because $g\geq 5$ and
we see that $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .
If $i_{u-1}= i_{u}-1$ and $e_{u-1}=1 $ , then because $g\geq 5$ and
we see that $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .
If $i_{u-1}= i_{u}-1$ and $e_{u-1}=g-1 $ , then because $g\geq 5$ and
again $n\in (u+1)^{\wedge }\mathcal {A}_{g,h}$ .
This completes the proof of Lemma 2.1.
3 Proof of Proposition 1.2
(1) Assume that $2g^{2k+1}=a_0+a_1\in 2^{\wedge }\mathcal {A}_{g,2}$ with $0<a_0<a_1$ . Then $a_0<g^{2k+1}$ and $a_1<2g^{2k+1}$ . Since $a_0,a_1\in \mathcal {A}_{g,2}$ ,
which is a contradiction. Hence, $2g^{2k+1}\notin 2^{\wedge }\mathcal {A}_{g,2}\ \text{for all } g\geq 2$ .
(2) Assume that $2g^{3k+2}+1\in 3^{\wedge }\mathcal {A}_{g,3}$ . Write
Then $a_1<g^{3k+2}$ and $a_2<2g^{3k+2}$ . By (3.1), there exists at least one $a_i\in A_g(W_0^{(3)})$ .
If $a_2\notin A_g(W_{2}^{(3)})$ , then $a_2\leq (g-1)(g^1+g^4+\cdots +g^{3k+1}).$ Thus,
which is a contradiction.
If $a_2\in A_g(W_{2}^{(3)})$ , then $a_2\leq (g-1)(g^2+g^5+\cdots +g^{3k-1})+g^{3k+2}.$ Thus,
which is a contradiction.
Hence, $2g^{3k+2}+1\notin 3^{\wedge }\mathcal {A}_{g,3}$ for all $g\geq 2$ .
(3) Assume that $2\cdot 4^{4k+3}+5\in 4^{\wedge }\mathcal {A}_{4,4}$ . Write
Then $a_{3}<2\cdot 4^{4k+3}$ .
If $a_3\notin A_4(W_{3}^{(4)})$ , then $a_3\leq 3(4^2+4^6+\cdots +4^{4k+2})$ . Since $2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$ it follows from (3.2) that
which is a contradiction.
If $a_3\in A_4(W_{3}^{(4)})$ , then $a_3\leq 3(4^3+4^7+\cdots +4^{4k-1})+4^{4k+3}$ . If $a_2\geq 4^{4k+3}$ , then we have $a_2+a_3>2\cdot 4^{4k+3}+5$ , which is a contradiction. It follows that $a_2<4^{4k+3}$ . Again by (3.2) and $2\cdot 4^{4k+3}+5\equiv 5 \pmod {16},$
which is a contradiction.
Hence, $2\cdot 4^{4k+3}+5\notin 4^{\wedge }\mathcal {A}_{4,4}$ .
This completes the proof of Proposition 1.2.
4 Proof of Theorem 1.3
By Theorem 1.1, $\mathcal {A}_{g,h}$ is a minimal asymptotic basis of order h. Thus, we only need to prove that $\mathcal {A}_{g,h}$ is a restricted asymptotic basis of order h.
Let $n\geq g^{(h-2)^2+1}$ and let the g-adic representation of n be
where $0 \leq i_1<\cdots <i_{t}$ and $1\leq e_j\leq g-1$ for $j=1,\ldots ,t$ .
Case 1: $t=1$ . Then $i_1\geq h$ . Note that
where $\delta =0$ if $e_1=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
Case 2: $2 \leq t \leq h-2$ . If there exists a $k\in \{2,\ldots ,t\}$ such that $i_{k}-i_{k-1}>h-t$ , then
where $\delta =0$ if $e_k=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
If $i_{k}-i_{k-1}\leq h-t$ for all $k\in \{2,\ldots ,t\}$ , then by $n\geq g^{(h-2)^2+1}$ , we have $i_1\geq h-t$ . Otherwise, if $i_1<h-t$ , then $i_t<t(h-t)$ , so that
which is a contradiction. Thus,
where $\delta =0$ if $e_1=1$ and otherwise $\delta =1$ . Hence, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
Case 3: $t = h-1$ . Then
where $0 \leq i_1<\cdots <i_{h-1}$ , $1\leq e_j\leq g-1$ for $j=1,\ldots ,h-1$ .
If there exists a $k\in \{1,\ldots ,h-1\}$ such that $3 \leq e_k \leq g-1$ , then
where $I=\{1,\ldots ,h-1\}$ , and thus $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
Now we consider what happens if $1\leq e_j\leq 2$ for $j=1,\ldots ,h-1$ .
(a) Suppose $e_{h-1}=1$ . Then by Lemma 2.1, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
(b) Suppose $e_1=e_2=\cdots =e_{h-2}=e_{h-1}=2$ .
If there exist $i_u<i_v $ with $1\leq u,v\leq h-1$ such that $i_u \equiv i_v \pmod h$ , then because
and $i_v \geq h$ , we have $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
If $i_s\not \equiv i_t\pmod h$ for $1\leq s\neq t\leq h-1$ , then because $h\geq 4$ , there exist $i_v\ (\geq 1)$ , $i_u$ with $u,v \in \{1,2,\ldots ,h-1\}$ such that $i_v \equiv i_u+1 \pmod h$ . Since $g\geq 5$ and
$n\in h^{\wedge }\mathcal {A}_{g,h}$ .
(c) Suppose $e_{h-1}=2$ , $e_{k}=1$ for some $k\in \{2,\ldots ,h-2\}$ . Then
where $K=\{1,\ldots ,k-1\}$ and $I=\{k+1,\ldots ,h-1\}$ . By Lemma 2.1,
and so $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
(d) Suppose $e_{h-1}=e_{h-2}=\cdots =e_2=2$ , $e_1=1$ . If $i_1>0$ , then
and so $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
If $i_1=0$ , then
(d1) There exists a $k\in \{2,\ldots ,h-1\}$ such that $i_{k}\equiv 0\pmod h$ . Then
Thus, $n\in h^{\wedge }\mathcal {A}_{g,h}$ .
(d2) Suppose $i_{k}\not \equiv 0\pmod h$ for all $k\in \{2,\ldots ,h-1\}$ .
If $h\geq 5$ , then one of the following two cases must occur.
Case (i): There exist $i_u<i_v $ with $2\leq u,v\leq h-1$ such that $i_u \equiv i_v \pmod h$ . Since
and $i_v>h$ , we have
Thus, $n \in h^{\wedge }\mathcal {A}_{g,h}$ .
Case (ii): $i_s\not \equiv i_t\pmod h$ for $2\leq s\neq t\leq h-1$ . Then there exist $i_v\ (\geq 1)$ , $i_u$ for some $u,v \in \{2,\ldots ,h-1\}$ such that $i_v \equiv i_u+1 \pmod h$ . Because $g\geq 5$ and
we have
Thus, $n \in h^{\wedge }\mathcal {A}_{g,h}$ .
Now suppose $h=4$ . Since $i_2,i_3\not \equiv 0\pmod 4$ , there is one further case in addition to (i) and (ii), namely, $\{i_2\pmod 4, i_3\pmod 4\}=\{1\pmod 4, 3\pmod 4\}$ . We may assume that $i_{2}\equiv 1\pmod 4$ . Because $g\geq 5$ and
we have $n\in 4^{\wedge }\mathcal {A}_{g,4}$ .
Case 4: $t \geq h$ .
Write $I=\{i_{1},\ldots ,i_{t}\}$ . Since $\lvert I\rvert \geq h$ , it is possible to write I as a union of h nonempty sets $I_{1},\ldots ,I_{h}$ , where each $I_{j}$ is a subset of some $W^{(h)}_{k}$ . It follows that $n \in h^{\wedge }\mathcal {A}_{g,h}$ .
This completes the proof of Theorem 1.3.