Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T16:05:23.502Z Has data issue: false hasContentIssue false

Application of probability theory to neonatal cardiac evaluation

Published online by Cambridge University Press:  06 May 2022

Javier O. Rodríguez Velásquez*
Affiliation:
Insight Group, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
Sandra C. Correa Herrera
Affiliation:
Insight Group, Hospital Universitario Nacional de Colombia, Bogotá, Colombia
Ana M. Bertolotto Cepeda
Affiliation:
Unidad de Recién Nacidos, Hospital Universitario San Ignacio, Bogotá, Colombia
*
Author for correspondence: Dr. Javier Rodríguez Velásquez. Cra. 79B N° 51-16 Sur. Int. 5. Apt. 102, Kennedy, Bogotá D.C., Colombia. Tel/Fax: +57 4527541. E-mail: [email protected]

Abstract

Based on probability theory, a methodology that allows diagnosing neonatal cardiac dynamics was previously developed; however, diagnostic applications of this method are required to validate it to the neonatal cardiac dynamics was conducted, allowing to differentiate normal from pathological dynamics. The hourly maximum and minimum heart rate values from 39 continuous and ambulatory electrocardiographic records with a minimum length of 21 hours were taken, from newborns between 0 and 10 days of life, 9 clinically within normality limits and 30 with cardiac pathologies. The probability of occurrence of heart rates in ranges of 5 beats/minute was calculated. The distributions of probability were analysed, and finally the diagnosis was determined by the physical-mathematical methodology. Then, a statistical validation of sensitivity, specificity, and diagnostic agreement was performed. Normal registries showed probability distributions with absent or minimal presence of heart rates of the ranges between 125 and 135 beats/minute, while the abnormal ones had values within these ranges, as well as absence or minimal presence of heart rates from 75 beats/minute to 85 beats/minute. The sensitivity and specificity were 100%, and the Kappa coefficient had a value of 1. Hereby, it is concluded that through an application of a physical–mathematical methodology of neonatal cardiac diagnosis, it is possible to differentiate normality from disease.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Feynman, RP, Leighton, RB, Sands, M,. Probabilidad. In Física. vol. 1, Addison-Wesley Iberoamericana, S.A, Wilmington, 1964: 6-1–6-16.Google Scholar
Blanco, L. Probabilidad, notas de clase. Universidad Nacional de Colombia, Departamento de Matemáticas y Estadística, 1996; 1: 30.Google Scholar
Rodríguez, J, Correa, C, Ortiz, L, Prieto, S, Bernal, P, Ayala, J. Evaluación matemática de la dinámica cardiaca con la teoría de la probabilidad. Rev Mex Cardiol 2009; 20: 183189.Google Scholar
Rodríguez, J, Álvarez, L, Tapia, D, et al. Evaluación de la dinámica cardiaca de pacientes con arritmia con base en la teoría de la probabilidad. Med (Bogotá) 2012; 1: 716.Google Scholar
Rodríguez, J, Correa, C, Prieto, S, et al. Confirmación del método de ayuda diagnóstica de la dinámica cardiaca de aplicación clínica desarrollado con base en la teoría de la probabilidad. Rev Fac Med 2011; 19: 167177.Google Scholar
Rodríguez, J, Bernal, P, Prieto, P, et al. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad, combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Arch alerg inmunol clín 2013; 44: 714.Google Scholar
Rodríguez, J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública 2010; 27: 211218.Google Scholar
Galván, E, Villa, M, Murgía, T, Neosano’s Group. Apgar Score and Neonatal Mortality. In The Collaborative Neonatal Health Study Group (Neosano)’s Experience In México. Looking Through the Eyes of Virginia. PAS 2005; 57: 2415.Google Scholar
BIREME/PAHO/WHO. Principales causas de muerte en menores de 1 año por componentes (según lista abreviada 28 de mortalidad infantil), 2006). Anuario Estadístico, [consultado 16 noviembre 2018] Disponible en: http://bvs.sld.cu/cgi-bin/wxis/anuario/?IsisScript=anuario/iah.xis&tag5001=mostrar^m1477&tag5009=STANDARD&tag5008=10&tag5007=Y&tag5003=anuario&tag5021=e&tag5022=2006&tag5023=1477.Google Scholar
Rodríguez, AC, Hernández, I. Factores que inciden en la mortalidad fetal tardía. Rev Cubana Obstet Ginecol 2004; 30: 16.Google Scholar
OMS. Reducir la mortalidad de los recién nacidos [Internet], , 2018, OMS, [Consultado el 16 noviembte 2018]. Disponible en. http://www.who.int/mediacentre/factsheets/fs333/es/.Google Scholar
Griffin, MP, Lake, DE, Moorman, JR. Heart rate characteristics and laboratory tests in neonatal sepsis. Pediatrics 2005; 115: 937941.CrossRefGoogle ScholarPubMed
Lake, DE, Richman, JS, Griffin, MP, Moorman, JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 2002; 283: R789R797.CrossRefGoogle ScholarPubMed
Fairchild, KD, O’Shea, TM. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clin Perinatol 2010; 37: 581598.CrossRefGoogle ScholarPubMed
Cuestas, E, Rizzoti, A, Agüero, G. Análisis sobre la variabilidad de la frecuencia cardíaca: un nuevo enfoque en la metodología de la investigación clínica de la sepsis neonatal. Arch Argent Pediatr 2011; 109: 333338.CrossRefGoogle Scholar
República de Colombia. Ministerio de salud. Resolución número 8430. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Bogotá D.C. , 1993.Google Scholar
Rodríguez, J, Prieto, S, Domínguez, D, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci 2013; 4: 370381.Google Scholar
Rodríguez, J. Nuevo diagnóstico físico y matemático de la monitoria fetal: predicción de aplicación clínica. Momento Rev Fís 2012; 44: 4965.Google Scholar
Rodríguez, J, Prieto, S, Flórez, M, et al. Sistemas dinámicos cardiacos en neonatos normales: Ley caótica cardiaca neonatal. Rev Cient Salud Uninorte 2014; 30: 359368.Google Scholar
Gonçalves, H, Pinto, P, Silva, M, Ayres, D, Bernardes, J. Toward the improvement in fetal monitoring during labor with the inclusion of maternal heart rate analysis. Med Biol Eng Comput 2016; 54: 691699. DOI 10.1007/s11517-015-1359-7.CrossRefGoogle ScholarPubMed
Longin, E, Gerstner, T, Schaible, T, Lenz, T, König, S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs term infants. J Perinat Med. 2006; 34: 303308.CrossRefGoogle ScholarPubMed
Eiselt, M, Curzi, L, Clairambault, J, Kauffmann, F, Médigue, C, Peirano, P. Heart-rate variability in low-risk prematurely born infants reaching normal term: a comparison with full-term newborns. Early Hum Dev 1993 Mar; 32: 183195.CrossRefGoogle ScholarPubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 10431065.CrossRefGoogle Scholar
Maestri, R, Pinna, GD, Accardo, A, et al. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol 2007; 18: 425433.CrossRefGoogle ScholarPubMed
Voss, A, Schroeder, R, Vallverdu, M, et al. Linear and nonlinear heart rate variability risk stratification in heart failure patients. Comput Cardiol 2008; 35: 557560.Google Scholar
Ahmad, S, Tejuja, A, Newman, K, Zarychanski, R, Seely, A. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care 2009; 13: 17.CrossRefGoogle ScholarPubMed
Buchan, C, Bravi, A, Seely, A. Variability analysis and the diagnosis, management, and treatment of sepsis. Curr Infect Dis Rep. 2012; 14: 512521.CrossRefGoogle ScholarPubMed
Bauer, A, Kantelhardt, JW, Barthel, P, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006; 367: 16741681.CrossRefGoogle ScholarPubMed