Published online by Cambridge University Press: 28 February 2023
In vitro rearing of honey bee larvae is ideal for bioassay studies; no honey bee stable cell lines are available. Inconsistency of internal development staging of reared larvae and a susceptibility to contamination are common problems encountered. Standardized protocols on rearing larvae in vitro to make the larvae growth and development more similar to that of natural colonies are necessary to ensure the accuracy of experimental results and promote honey bee research as a model organism. Here, we concluded that when larval fasting weight was >160 mg, the time point of gut emptying can be defined as the critical point separating the larval and prepupal stages. In this way, we can conduct precise studies on the prepupal stage, such as organ remodeling during metamorphosis. Simultaneously, we further verified that recombinant AccApidaecin in genetic engineered bacteria added to the larval diet upregulated antibacterial peptide gene expression, and did not stimulate the stress response in larvae, nor did it affect the pupation rate or eclosion rate. This demonstrated that feeding recombinant AccApidaecin can enhance the individual antibacterial ability at the molecular level.