The components of an aeroengine gas-turbine combustor have to perform multiple tasks – control of external and internal air distribution, fuel injector feed, fuel/air atomisation, evaporation, and mixing, flame stabilisation, wall cooling, etc. The ‘rich-burn’ concept has achieved great success in optimising combustion efficiency, combustor life, and operational stability over the whole engine cycle. This paper first illustrates the crucial role of aerodynamic processes in achieving these performance goals. Next, the extra aerodynamic challenges of the ‘lean-burn’ injectors required to meet the ever more stringent NOx emissions regulations are introduced, demonstrating that a new multi-disciplinary and ‘whole system’ approach is required. For example, high swirl causes complex unsteady injector aerodynamics; the threat of thermo-acoustic instabilities means both aerodynamic and aeroacoustic characteristics of injectors and other air admission features must be considered; and high injector mass flow means potentially strong compressor/combustor and combustor/turbine coupling. The paper illustrates how research at Loughborough University, based on complementary use of advanced experimental and computational methods, and applied to both isolated sub-components and fully annular combustion systems, has improved understanding and identified novel ideas for combustion system design.