Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T13:31:16.076Z Has data issue: false hasContentIssue false

On the sum of chemical reactions

Published online by Cambridge University Press:  24 May 2022

LINARD HOESSLY
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark emails: [email protected]; [email protected]; [email protected].
CARSTEN WIUF
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark emails: [email protected]; [email protected]; [email protected].
PANQIU XIA
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark emails: [email protected]; [email protected]; [email protected].

Abstract

It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often called a complex reaction in contrast to an elementary reaction. Photosynthesis $6 \text{CO}_2+6 \text{H}_2\text{O} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2$ is an example of such complex reaction. We introduce a mathematical operation that corresponds to summing two chemical reactions. Specifically, we define an associative and non-communicative operation on the product space ${\mathbb{N}}_0^n\times {\mathbb{N}}_0^n$ (representing the reactant and the product of a chemical reaction, respectively). The operation models the overall effect of two reactions happening in succession, one after the other. We study the algebraic properties of the operation and apply the results to stochastic reaction networks (RNs), in particular to reachability of states, and to reduction of RNs.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. M. & May, R. M. (1991) Infectious Diseases of Humans: Dynamics and Control, 5th ed. Interdisciplinary Applied Mathematics, Vol. 17, Oxford University Press, Oxford.Google Scholar
Anderson, D., Craciun, G. & Kurtz, T. (2010) Product-form stationary distributions for deficiency zero chemical reaction networks. Bul. Math. Biol. 72, 19471970.Google ScholarPubMed
Anderson, D. & Kurtz, T. (2011) Continuous time Markov Chain models for chemical reaction networks. In: H. Koeppl, D. Densmore, G. Setti and M. Di Bernardo (editors), Design and Analysis of Biomolecular Circuits, Springer-Verlag, New York, pp. 342.CrossRefGoogle Scholar
Anderson, D. F. & Cotter, S. L. (2016) Product-form stationary distributions for deficiency zero networks with non-mass action kinetics. Bull. Math. Biol. 78, 23902407.CrossRefGoogle ScholarPubMed
Bowen, J., Acrivos, A. & Oppenheim, A. (1963) Singular perturbation refinement to quasi-steady state approximation in chemical kinetics. Chem. Eng. Sci. 18(3), 177188.Google Scholar
Cappelletti, D. & Wiuf, C. (2016) Elimination of intermediate species in multiscale stochastic reaction networks. Ann. Appl. Probab. 26(5), 29152958.Google Scholar
Cappelletti, D. & Wiuf, C. (2016) Product-form Poisson-like distributions and complex balanced reaction systems. SIAM J. Appl. Math. 76(1), 411432.CrossRefGoogle Scholar
Christiansen, J. A. (1953) The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations. Adv. Catal. 5, 311353.Google Scholar
Cook, M., Soloveichik, D., Winfree, E. & Bruck, J. (2009) Programmability of Chemical Reaction Networks, Springer, Berlin, Heidelberg, pp. 543584.Google Scholar
Cornish-Bowden, A. (2013) Fundamentals of Enzyme Kinetics, Springer, New York.Google Scholar
Ewens, W. (2004) Mathematical Population Genetics 1: Theoretical Introduction . Interdisciplinary Applied Mathematics, Springer, New York.CrossRefGoogle Scholar
Feinberg, M. (2019) Foundations of Chemical Reaction Network Theory, 1st ed. Interdisciplinary Applied Mathematics, Vol. 17, Springer, Cham.CrossRefGoogle Scholar
Feliu, E., Lax, C., Walcher, S. & Wiuf, C. (2019) Quasi-steady state and singular perturbation reduction for reaction networks with non-interacting species. arXiv preprint arXiv:1908.11270.Google Scholar
Feliu, E. & Wiuf, C. (2012) Variable elimination in chemical reaction networks with mass-action kinetics. SIAM J. Appl. Math. 72(4), 959981.Google Scholar
Feliu, E. & Wiuf, C. (2013) Simplifying biochemical models with intermediate species. J. R. Soc. Interface 10, 87.CrossRefGoogle ScholarPubMed
Gardiner, C. W. (2004) Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd ed. Springer Series in Synergetics, Vol. 13, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Ginsburg, S. & Spanier, E. H. (1964) Bounded ALGOL-like languages. Trans. Am. Math. Soc. 113(2), 333368.Google Scholar
Ginsburg, S. & Spanier, E. H. (1966) Semigroups, Presburger formulas, and languages. Pacific J. Math. 16(2), 285296.Google Scholar
Gunawardena, J. (2012) A linear framework for time-scale separation in nonlinear biochemical systems. PloS One 7(5), e36321.CrossRefGoogle ScholarPubMed
Hack, M. (1976) The equality problem for vector addition systems is undecidable. Theor. Comput. Sci. 2(1), 7795.CrossRefGoogle Scholar
Hoessly, L. & Wiuf, C. (2022) Fast reactions with non-interacting species in stochastic reaction networks. Math. Biosci. Eng. 19, 27202749.Google ScholarPubMed
Hopcroft, J. & Pansiot, J.-J. (1979) On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8(2), 135159.Google Scholar
Hornos, J., Schultz, D., Innocentini, G., Wang, J., Walczak, A., Onuchic, J. & Wolynes, P. (2005) Self-regulating gene: an exact solution. Phys. Rev. E 72(5), 051907.Google ScholarPubMed
Kang, H.-W. & Kurtz, T. G. (2013) Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23(2), 529583.CrossRefGoogle Scholar
Kepler, T. & Elston, T. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81(6), 31163136.CrossRefGoogle ScholarPubMed
King, E. & Altman, C. (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 60, 13751378.CrossRefGoogle Scholar
Kurtz, T. G. (1981) Approximation of Population Processes. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Murray, J. D. (2002) Mathematical Biology: I. An Introduction, 3rd ed. Interdisciplinary Applied Mathematics, Vol. 17, Springer, New York.CrossRefGoogle Scholar
Pantea, C., Gupta, A., Rawlings, J. B. & Craciun, G. (2014) The QSSA in chemical kinetics: as taught and as practiced. In: Discrete and Topological Models in Molecular Biology, Springer, Berlin, Heidelberg, pp. 419442.Google Scholar
Parikh, R. J. (1961) Language–generating devices. Quarterly Progress Report, No. 60, Research Laboratory of Electronics, MIT, pp. 199212.Google Scholar
Parikh, R. J. (1966) On context-free languages. J. ACM 13(4), 570581.CrossRefGoogle Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. (2015) Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925979.CrossRefGoogle Scholar
Paulevé, L., Craciun, G. & Koeppl, H. (2014) Dynamical properties of discrete reaction networks. J. Math. Biol. 69(1), 5572.CrossRefGoogle ScholarPubMed
Peccoud, J. & Ycart, B. (1995) Markovian modeling of gene-product synthesis. J. Peccoud, B. Ycart. 48(2), 222234.Google Scholar
Sáez, M., Feliu, E. & Wiuf, C. (2018) Graphical criteria for positive solutions to linear systems. Linear Algebra Appl. 552, 166193.Google Scholar
Sáez, M., Wiuf, C. & Feliu, E. (2017) Graphical reduction of reaction networks by linear elimination of species. J. Math. Biol. 74(1), 195237.Google ScholarPubMed
Sakamoto, A. & Kawakami, H. (1988) A graphical approach to complex reaction networks. Chem. Phys. Lett. 146(5), 444448.CrossRefGoogle Scholar
Singhal, G., Renger, G., Sopory, S. & Irrgang, K. (2012) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, Springer, Dordrecht.Google Scholar
Szlobodnyik, G., Szederkényi, G. & Johnston, M. (2019) Reachability analysis of subconservative discrete chemical reaction networks. Match 81, 705736.Google Scholar
Temkin, O. & Bonchev, D. (1992) Application of graph theory to chemical kinetics: part 1. kinetics of complex reactions. J. Chem. Edu. 69(7), 544550.Google Scholar
Temkin, O., Zeigarnik, A. W. & Bonchev, D. G. (1996) Chemical Reaction Networks: A Graph-Theoretical Approach, CRC Press, Boca Raton.Google Scholar
Thattai, M. & van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks. PNAS 98(15), 86148619.Google ScholarPubMed
Weidlich, W. & Günter, H. (2012) Concepts and Models of a Quantitative Sociology The Dynamics of Interacting Populations . Springer Series in Synergetics, Springer, Berlin, Heidelberg.Google Scholar
Wilkinson, D. (2006) Stochastic Modelling for Systems Biology, Chapman and Hall/CRC, Boca Raton.CrossRefGoogle Scholar
Wiuf, C. & Xu, C. (2020) Classification and threshold dynamics of stochastic reaction networks. arXiv preprint arXiv:2012.07954.Google Scholar
Yamasaki, H. (1984) Normal petri nets. Theor. Comput. Sci. 31(3), 307315.CrossRefGoogle Scholar